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Carnivora is a successful taxon in terms of dietary diversity. We investigated

the dietary adaptations of carnivoran dentition and the developmental back-

ground of their dental diversity, which may have contributed to the success

of the lineage. A developmental model was tested and extended to explain

the unique variability and exceptional phenotypes observed in carnivoran

dentition. Carnivorous mammalian orders exhibited two distinct patterns of

dietary adaptation in molars and only Carnivora evolved novel variability,

exhibiting a high correlation between relative molar size and the shape of

the first molar. Studies of Bmp7-hetero-deficient mice, which may exhibit

lower Bmp7 expression, suggested that Bmp7 has pleiotropic effects on these

two dental traits. Its effects are consistent with the pattern of dietary adap-

tation observed in Carnivora, but not that observed in other carnivorous

mammals. A molecular evolutionary analysis revealed that Bmp7 sequence

evolved by natural selection during ursid evolution, suggesting that it plays

an evolutionary role in the variation of carnivoran dentition. Using mouse

experiments and a molecular evolutionary analysis, we extrapolated the

causal mechanism of the hitherto enigmatic ursid dentition (larger M2 than

M1 and M3). Our results demonstrate how carnivorans acquired novel

dental variability that benefits their dietary divergence.
1. Introduction
A major goal of evolutionary biology is to explain why some taxa outcompete

others during evolution. Variability (i.e. patterns of variation that can be generated)

is a critical factor in evolution [1,2]. The route, speed and potential for evolution

(evolvability) are biased by patterns of variation (e.g. covariation between traits)

[1,2]. Therefore, evolutionary pathways and phenotypic diversity among taxa or

populations are often consistent with the pattern of variation among individuals

within a population (e.g. [1–3]). Evolutionary developmental (evo–devo) biology

integrates evolutionary, adaptational and developmental approaches as well as the

developmental basis of variability or covariation of traits [4]. However, evo–devo

studies in non-model organisms and fossil taxa are beset with difficulties

(e.g. [5,6]). In this study, we provide a basis for understanding the developmental

origins of the variability or covariation of traits that contribute to various dietary

adaptations and long-time lineage success using an integrated approach.

Three mammalian orders exhibit carnivorous dietary adaptations: the extant

orders Carnivora and Dasyuromorphia and the extinct Creodonta [7,8]. Of these

orders, Carnivora is the most long-lived and successful mammalian taxon in

terms of dietary divergence [7,8]. For example, Carnivora and Creodonta, which

are considered sister orders, were competitors during the Palaeogene period

[9,10], but carnivorans (the order Carnivora) were ultimately more successful.
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The observed diversity and dietary divergence of these two

orders are often attributed to an evolutionarily novel structure,

namely flesh-shearing teeth known as carnassials [7,11,12].

However, the carnassials in these orders are derived from

different teeth [7,11,12]. Carnassials evolved from premolars

and mesial molars (e.g. P4 and M1) in carnivorans but distal

molars (e.g. M1 and M2 or M2 and M3) in creodonts [7,11,12].

These established differences were present at the origin of

these taxa [11]. In addition, the present success of Carnivora

is owing, to a large extent, to their evolutionary versatility;

that is, they possess grinding teeth in addition to carnassials

[7,8]. However, how these differences affected their success over

creodonts has not been evaluated in functional morphology

and evo–devo frameworks.

A developmental model called the inhibitory cascade (IC)

model proposes that the relative size of the lower molars is

governed by the balance of inhibitory molecules secreted by

the M1 tooth germ and activation molecules from the

mesenchyme [13]. Accordingly, relative molar sizes vary

from M1 . M2 . M3 to M1 ¼M2 ¼M3 to M1 , M2 , M3

along a particular regression line in the M2/M1 versus M3/

M1 morphospace [13] (figure 1). This model can explain inter-

specific variation in many mammalian groups except for

several bear, horse and vole species [13–21]. However,

some taxa, such as canids (i.e. Canidae, Carnivora), exhibit

unique patterns with small slopes; the slope of the M2/M1

versus M3/M1 regression in canids (0.45) is smaller than

that indicated by the IC model in murines (2.0) [13]. The cor-

relation between M2/M1 and M3/M1 indicates that they

basically fit the IC model (the inhibition/activation mechan-

ism affects both M2/M1 and M3/M1) [15]. However, ursids

(i.e. Ursidae, Carnivora) exhibit M1 , M2 . M3, which

could not be explained by the model [14]. Several members

of equines (horses) and arvicolines (voles) also exhibit M1 ,

M2 . M3 or M1 . M2 , M3, which cannot be explained by

the model [14,16,17]. The interspecific slope for other carni-

vorous mammals, the causes underlying the differences in

slopes from the IC model and the exceptional dental pattern

observed in ursids remain unclear.

Previous studies have reported varying IC patterns (slope

of M2/M1 versus M3/M1 regression) among mammalian taxa

(slope range: 0.45–3.269 [13,15–20]). The smallest slope was

reported in Canidae, Carnivora [15], while the original exper-

iment by Kavanagh et al. [13] resulted in slope ¼ 2. These

low slopes can be generated by a reduction in the M3/M1

ratio or an increase of the M2/M1 ratio. A previous study has

suggested that particular signalling molecules (e.g. a diffusible

inhibitor or its antagonist) with low diffusibilities can result

in small slopes because they may affect only M2/M1 and not

M3/M1 [15]. However, this hypothesis has not been tested.

The relative molar sizes (i.e. the relative sizes of M1, M2

and M3) are reliable indicators of diet in comparative analyses

of murines [13], canids [15,22] and other mammalian orders

[20]. This property is at least partly due to a high evolvability;

changes in parameters underlying a single developmental

mechanism (e.g. IC) can generate varying molar sizes [13].

According to previous ecomorphological studies, the pro-

portions of shearing and grinding regions within a molar

row reflect diet in mammals; the shearing function is impor-

tant for carnivorous diets and the grinding function for

omnivorous diets [23–25]. In Carnivora, the trigonid of the

M1 functions in shearing flesh and the talonids of the M1

and the other molars function in crushing various objects
[8,11,12]. In Creodonta and Dasyuromorphia, the trigonids

of all molars retain the shearing function, but that of the car-

nassial is most prominent [8,11,12]. Therefore, relative molar

size and carnassial shape (relative trigonid size) play impor-

tant and independent roles in dietary adaptations in

mammals. However, the adaptive evolution of these traits

has not been investigated separately or integrated into an

evo–devo framework.

Evolutionary pathways are constrained by the phenotypic

variability and covariation of traits [1,2]. In dental mor-

phology, various dental traits can change simultaneously

when particular signalling molecules are modified [26].

If various dental traits are modified simultaneously (generat-

ing covariation among the traits) to adapt to a particular diet

via pleiotropic effects, the evolutionary pathway can be con-

sidered canalized or constrained by the developmental

mechanism. In this manuscript, the direction of morpho-

logical changes involved in the evolution of particular diets

that are shared among taxa is referred as an ‘adaptation

pattern’. If an adaptation pattern observed in a particular

taxon relates to (or correlates to) variability or covariation

caused by a developmental mechanism, the constraint can

benefit the taxon, perhaps enabling easier and rapid evol-

ution. For example, in a particular taxon, if a change in

only one signalling molecule during development generates

a set of phenotypic changes that contribute to dietary adap-

tation, this developmental mechanism can be considered

advantageous to the taxon.

In this context, the investigation of pleiotropic effects related

to dental traits is crucial for determining the developmental

mechanism that constrains or promotes evolution in a particu-

lar taxon. In other words, the developmental mechanism

that shapes the adaptation pattern with respect to competitors

can be crucial. We focused on Usag-1 (uterine sensitization-

associated gene-1, also known as ectodin or Sostdc1/Sclerostin

domain-containing protein 1) and Bmp7 (bone morphogenetic

protein 7). USAG-1 was treated as a diffusible inhibitor in the

IC model by Kavanagh et al. [13] and USAG-1-deficient mice

have supernumerary molars [27]. BMP7 is a USAG-1 antagonist

and is expressed during dental development [28]. There

is support for the homology of each cusp (e.g. protocone), talo-

nid and trigonid between rodents and other mammals,

including carnivorans [29–33]. Therefore, we used genetically

modified mice to investigate the phenotypes affected by these

two molecules.

After we identified candidate molecules associated with

the evolved phenotypes, we examined their molecular evol-

ution to confirm whether these molecules evolved among the

targeted taxa. Along the lineages in which we observed signifi-

cant molecular evolution, we also investigated phenotypic

evolution to examine the relationship between phenotypic

and molecular evolution.

In this study, we examined the advantages of Carnivora

relative to other taxa by investigating (i) the variability in

molars, including IC patterns (slope of the M2/M1 versus

M3/M1 regression) and carnassial shape, in carnivorous mam-

mals, (ii) patterns of dietary adaptation in relative molar size

and carnassial shape in these mammals, (iii) phenotypes of

USAG-1 or BMP7 hetero-deficient mice, and (iv) molecular

and phenotypic evolution along ursid lineages. Finally, we

show a pattern of covariation between carnassial shape and

relative molar size, which represents the developmental basis

that promoted dietary diversification of the Carnivora.
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2. Material and methods
(a) Species
Mandible specimens of 258 living and fossil species belonging

to Carnivora, Creodonta and Dasyuromorphia were examined.

Measurement data are summarized in the electronic supplementary

material, text S1 and table S1.
(b) Dietary categories
Diets were categorized as hyper-carnivorous (HC; these animals

have diets largely consisting of mammals or birds, or taxa larger

than themselves with respect to body mass), carnivorous (C;

these animals are primarily flesh-eaters), omnivorous (O; these

animals eat various foods, with neither flesh nor insects compris-

ing more than 50% of their diet), insectivorous (I; these animals

http://rspb.royalsocietypublishing.org/
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are primarily insect-eaters) or herbivorous (He; these animals are

primarily leaf-eaters). For both extant and fossil species, dietary

information was obtained from the literature (electronic sup-

plementary material, text S2 and table S1).

(c) Morphological analysis
The lower molar rows were photographed from the occlusal

perspective, and the projected areas of three molars (M1, M2

and M3), as well as the trigonids (trd) and talonids (tad) of

the carnassials (M1 in Carnivora, M3 or M2 in Creodonta and

M4 in Dasyuromorphia) were measured using IMAGEJ (NIH,

Bethesda, MD, USA). To investigate the application of the IC

model in carnivorous mammals, relative molar sizes (i.e. M2/

M1 and M3/M1) were measured. In addition, carnassial shape

was measured as the ratio of the trigonid to talonid (tad/trd)

to test the correlation between IC and tooth shape (tad/trd).

The ridge was considered the border between the trigonid

and talonid areas of the carnassial (M1 for Carnivora, M2 or

M3 for Creodonta and M4 for Dasyuromorphia; figure 2). In

addition, the ratio of carnassial-trigonid size to that of the

total molar row was compared between Carnivora and Creo-

donta to visualize the variability in the relative shearing

region among molar rows. Among M2/M1, M3/M1 and tad/

trd, reduced major axis (RMA) regressions were performed

using PAST [34]. RMA was chosen based on our hypothesis

that the ratios are explained by another factor (i.e. inhibition/

activation) and according to the design of previous studies

[13,15].

(d) Macroevolutionary analyses and phylogenetic
analysis of variance

An RMA regression analysis of M3/M1 and tad/trd on M2/M1

was performed. Differences in M2/M1 and tad/trd between diet-

ary categories were tested by analysis of variance (ANOVA) with

Tukey’s tests as the most common comparison method;
additionally, a phylogenetic ANOVA was performed to avoid

phylogenetic biases.

Phylogenetic ANOVA [35] were performed using phytools in

R [36] with 1000 simulation replicates and a Bonferroni–Holm

correction for post hoc tests. Branch lengths were estimated

using methods described by Pagel [37]. The phylogenetic tree

used for the phylogenetic ANOVA was obtained from previous

studies (described in the electronic supplementary material,

text S3 and figures S3–S4). Owing to the lower availability of phy-

logenetic information, fewer species were used for phylogenetic

ANOVA than ANOVA/Tukey’s tests.

(e) Production of Usag-1- and Bmp7-deficient mice
Bmp7- and Usag-1-deficient mice were produced from previously

generated lines [38]; Usag-1-deficient mice had the C57Bl6/J

background and Bmp7-deficient mice had the ICR background.

Double-knockout mice were generated by crossing two mouse

lines. To circumvent the effect of background, only F2 progeny

were analysed. To avoid the use of specimens possessing

supernumerary and/or fused teeth [27], heterozygous (Het:

hetero-deficient) and wild-type (WT) F2 mice were used for the

analysis.

( f ) Morphological comparison of genotypes
For the dry skulls of F2 mice, the lower molar rows from the

occlusal perspective were photographed, and the projected

areas of the three molars (M1, M2 and M3) [39] as well as the tri-

gonids (trd) and talonids (tad) of the M1 (the segmentation of the

trigonid and talonid is shown in figure 3c) were measured. The

general linear model (GLM) was applied to determine the effects

of USAG-1, BMP7 and their statistical interactions based on the

results of the double-deficient mouse phenotypes. After applying

the Anderson–Daring normality test, the effects of USAG-1,

BMP7 and their interaction on M2/M1, M3/M1 and tad/trd

were examined using GLM implemented in MINITAB 14 (Minitab,

Inc., PA, USA).

http://rspb.royalsocietypublishing.org/
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(g) Molecular evolution of BMP7
The nucleotide sequences of the Bmp7 genes of all available

carnivoran species and appropriate outgroups were retrieved

from public databases, and non-synonymous and synonymous

substitutions along the branches of the phylogenetic tree were

calculated. BMP7 consists of two distinctive domains, the pro-

domain and the mature-domain [40–42], which were analysed

separately. Details of this analysis are provided in the electronic

supplementary material, text S4).
 ng.org
Proc.R.Soc.B

283:20160375
3. Results
(a) Inhibitory cascade pattern and carnassial shape in

carnivorous mammals
In the M2/M1 and M3/M1 morphospace, the phenotypes of most

species could be explained by the IC model [14], except for ursids

and some creodonts (figure 1a; electronic supplementary

material, table S1). In addition, there was a positive correlation

between M2/M1 and M3/M1 in all families ( p , 0.05), also

supporting the IC model; that is, the inhibition/activation mech-

anism affects both M2 and M3 [15] (figure 1a,b; electronic

supplementary material, tables S2–S3). For most families in

Carnivora, there was a correlation between M2/M1 and tad/trd

( p , 0.05 for all families with more than 12 species), indicating

a relationship between the IC and carnassial shape (tad/

trd), but this relationship was not detected in Creodonta or

Dasyuromorphia ( p . 0.05; figure 1a,b; electronic supple-

mentary material, tables S2–S3). The slopes of the regression of

M2/M1 and M3/M1 in carnivorans (slope: 0.45 in Canidae

species with three molars, 1.08 in Ursidae and 0.90 in all carni-

voran species with three molars) were smaller than those of

other orders (slope range for Creodonta and Dasyuromorphia:

2.01–2.57; electronic supplementary material, table S2).
(b) Adaptation patterns in carnivorous mammals
Among all Carnivora, the M2/M1 and tad/trd scores tended

to increase gradually from HC to C, O and I species

(figure 1a,b).

The variation in these scores for carnivoran families is

shown in the electronic supplementary material, figure S1a,b.

Within these families, we compared the M2/M1 and tad/trd

scores among dietary categories. Based on family-level com-

parisons, the average M2/M1 and tad/trd scores for each

dietary category increased from HC, C and O to I species (elec-

tronic supplementary material, figure S1c,d). According to

ANOVA with Tukey’s tests, the effect of diet was not significant

for several families, but was significant for families that con-

tained sufficient numbers of species in each dietary category

(such as Canidae and Mustelidae; electronic supplementary

material, table S4).

In the phylogenetic ANOVA, the effect of diet was significant

for all Carnivora when the effects of phylogeny were removed

( p ¼ 0.001; electronic supplementary material, table S4). In

addition, either M2/M1 or tad/trd was significantly different

for all within-family comparisons, except for Procyonidae, in

which all species were categorized as being omnivorous or insec-

tivorous (electronic supplementary material, table S4).

Therefore, we concluded that the evolution of the relative

molar sizes and relative size of the trigonid and talonid reflect

diet in Carnivora.
According to the results of the ANOVA with Tukey’s test

and phylogenetic ANOVA for Creodonta, the effect of diet

on M2/M1 was significant for Oxyaenidae, and the effect of

diet on tad/trd was significant for Hyaenodontidae and Oxy-

aenidae (electronic supplementary material, table S4). The

evolutionary direction of M2/M1 in Oxyaenidae was opposite

to that of carnivorans; M2/M1 scores increased from I, O, C to

HC species (electronic supplementary material, figure S2c).

Such patterns of carnivorous evolution were also observed in

Hyaenodontidae. That is, a more carnivorous subfamily Hyai-

nailourinae, derived from Proviverrinae [43], presented larger

distal molars (electronic supplementary material, figure S2a).

However, these species were not included in the phylogenetic

ANOVA owing to the paucity of phylogenetic information.

In Dasyuromorphia, while the results of the ANOVA and

phylogenetic ANOVA were not significant, the average tad/

trd scores tended to increase from HC, C, O to I species (elec-

tronic supplementary material, figure S2d). Notably, the HC

marsupial Thylacinus presented larger distal molars than

those of other dasyuromorphians (electronic supplementary

material, figure S2a). However, carnivorous species did not

necessarily present larger M2/M1 scores within Dasyuridae

(electronic supplementary material, figure S2c). As several

authors have suggested that the marsupial M2 is homologous

to the placental M1 [44], we also compared M3/M2 among

dietary categories to further examine the relevance of the IC

model in marsupials (electronic supplementary material,

figure S2e and table S5). Carnivorous species tended to

have larger distal molars than omnivorous and insectivorous

species (electronic supplementary material, figure S2e).

These results indicated that Carnivora, Creodonta and

Dasyuromorphia have different patterns of dietary adaptation

with respect to molar proportions, but not to carnassial shape.

In Creodonta and Dasyuromorphia, the relative molar sizes

based on M2/M1 scores increased (i.e. increasing distal

molar: carnassial) as diet became more carnivorous, in contrast

with the pattern observed in Carnivora. However, the carnas-

sial shape based on tad/trd decreased as the diet became

carnivorous in all three orders. Therefore, in Carnivora,

M2/M1, M3/M1 and tad/trd were positively correlated and

variation in the ratio of carnassial-trigonid size/total molar

row (i.e. the relative shearing region) grew larger (figure 2).

Therefore, the relative shearing region varies less in Creodonta

than in Carnivora (figure 2).
(c) Usag-1- and Bmp7-deficient mice
To determine the cause of the unique IC pattern and the

strong correlations between M2/M1 and tad/trd among car-

nivorans, we investigated the morphological integration or

pleiotropic effects [1,2] of the signalling molecules USAG-1

and BMP7, which are hypothetical components of the IC

model [13,45]. According to the GLM results, BMP7 affected

both M2/M1 and tad/trd ( p , 0.05), but not M3/M1

(figure 3; electronic supplementary material, tables S6–S7).

USAG-1 affected both M2/M1 and M3/M1 ( p , 0.05), but

not tad/trd. Statistical interactions between the two mol-

ecules were not significant. Therefore, BMP7 results in

morphological integration or has pleiotropic effects on the

two traits: M2/M1 and tad/trd (figure 3). As Bmp7 hetero-

deficient mice exhibit larger M2/M1 and tad/trd, it is likely

that the pleiotropic effects of BMP7 generated a positive cor-

relation between the parameters. In addition, changes in only
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M2/M1 (and not in M3/M1) induced by BMP7 result in

higher variability in the relative M1 size or a smaller slope

in the IC regression.
(d) Molecular evolution of BMP7 among Carnivora and
dental evolution in the ursid lineage

To further understand how Bmp7 evolved in carnivorans, the

numbers and rates of non-synonymous and synonymous

substitutions were analysed separately in the pro-domain

and the mature-domain. We determined that the mature-

domain of BMP7 evolved under significantly higher v

ratios in the ancestral ursid branch than other branches,

while the pro-domain in this branch evolved under strong

purifying selection (small v ratios), similar to other branches

(figure 4a; electronic supplementary material, tables S8–S9).

It should be noted that while non-synonymous mutations

were significantly more frequent than in the other branches,

the v ratio was still less than 1 in the ursid branch.
The direction of dental evolution from the mustelid–ursid

common ancestor to Ursidae is represented in figure 4b,c. Ferrets,

dogs and other caniforms formed a group in the morphospace,

while ursids occupied a distinct region (figure 4b,c). A species

of canid (Otocyon megalotis) which possesses four lower molars

was plotted closer to ursid. In addition, fossil Ursidae relatives

(i.e. members of Hemicyonidae and Ursoidea, which are out-

groups of extant Ursidae) were closer to caniforms, and fossil

ursids were grouped between extant Ursidae and outgroups

(figure 4b,c). These results indicate that M2/M1 and tad/trd

scores increased during ursid evolution.
4. Discussion
(a) Pattern of dietary adaptation of the molars of three

mammalian orders
The relative molar sizes (M2/M1) and carnassial shape (tad/

trd) exhibited parallel evolution, reflecting dietary evolution
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in carnivorans, creodonts and dasyuromorphians, indicat-

ing that these traits are important for dietary adaptations

(ANOVA with Tukey’s test and phylogenetic ANOVA:

figure 1; electronic supplementary material, figures S1–S2

and table S4). We observed two opposing patterns of

adaptation: carnivorans tended to exhibit increases in

mesial molars during carnivorous adaptation, but creodonts

and dasyuromorphians tended to exhibit increased distal

molars (i.e. they presented enlarged carnassials for a carni-

vorous diet; figure 1a,b). The difference in the observed

evolutionary patterns in relative molar sizes can be explained

by which molar was the carnassial in the ancestor (i.e. the

mesial molar in Carnivora and distal molar in Creodonta

and Dasyuromorphia). However, the pattern of adaptation

in carnassial shape was similar among these three orders

(figure 1a,b). The relative proportions of shearing and

grinding regions have been previously investigated in Carni-

vora by measuring the total molar row [23–25], but these

dental measurements are a combination of two dental

traits: relative molar size (e.g. M2/M1) and carnassial shape

(tad/trd).

(b) Variability in relative molar sizes in Carnivora
For relative molar sizes, the carnivoran IC pattern is distinct

from those of other mammals with smaller slopes for the

M2/M1 versus M3/M1 regression (figure 1a; electronic sup-

plementary material, table S2) [13–20]. In the Carnivora,

many extant taxa lost their M3, except for Canidae and Ursi-

dae. Focusing on these carnivoran taxa, which have three

lower molars, the relationship between M2/M1 and M3/M1

was observed to be unique among mammals. That is, the

slopes in carnivoran taxa (Canidae: 0.45; Canidae þ Ursidae:

0.90; Ursidae: 1.08) were lower than the observed range of

interspecific variation at the family or higher taxonomic

level for other mammals (1.17–3.269) [13,18–20] (electronic

supplementary material, table S2). According to this variabil-

ity, the relative M1 (carnassial) size, which is important for

the relative shearing and grinding surfaces, can vary more

than in other mammals (figure 1).

(c) Correlation between two traits important for dietary
adaptation in Carnivora

Furthermore, relative molar sizes (M2/M1) and carnassial

shape (tad/trd) were extensively correlated in carnivorans

but not in creodonts or dasyuromorphians (figure 1b,c;

electronic supplementary material, table S3). A positive corre-

lation between M2/M1 and tad/trd facilitates carnivoran

dietary adaptations in both carnivorous and omnivorous direc-

tions because the relative shearing and grinding functions

change. During carnivorous adaptation, the relative carnassial

size (relative M1 size in relation to total molar row) and relative

trigonid size (shearing region) in the carnassial correspond-

ingly increase. During omnivorous adaptation, the relative

size of the distal molars and talonid of the first molar (all of

which have grinding functions) can correspondingly increase.

Conversely, a negative correlation between these two traits, if

present, can facilitate dietary adaptation in Creodonta and

Dasyuromorphia. This is because the carnassial is located

mesially in Carnivora but distally in Creodonta and Dasyuro-

morphia. A correlation between M2/M1 and tad/trd was

only observed in Carnivora and may be a characteristic of the
group (electronic supplementary material, table S3 and text

S5). This correlation may facilitate the parallel evolution of

dentition during dietary adaptation in many carnivoran

families (electronic supplementary material, table S4). How-

ever, in Creodonta and Dasyuromorphia, these two traits

were not highly correlated. According to the unique IC pattern

(smaller slope) and the correlation between relative molar size

and carnassial shape, carnivoran dentition can vary greatly in

the relative proportion of shearing and grinding regions

(figure 2). For example, among families that present three

molars, the relative shearing region ranged from 0.3 to 0.7 in

Canidae (even excluding Otocyon megalotis, which has a score

of 0.17, but four molars) and from 0.2 to 0.45 in Hyaenodonti-

dae. As a result, all families except for Mephitidae include more

than one dietary category (electronic supplementary material,

table S4 and text S6).

We did not observe a correlation between M2/M1 and

tad/trd in Creodonta and Dasyuromorphia. However,

when Sarcophilus was excluded from the Dasyuromorphia

dataset, we observed a significant correlation (slope , 0 in

contrast with carnivorans; electronic supplementary material,

figure S2). Therefore, relative molar sizes and molar shape

also evolved simultaneously in Dasyuromorphia, while the

relative molar size pattern was opposite to that of Carnivora.

However, these correlations were relatively weaker (as they

were heavily influenced by one species) than those of carni-

vorans. This was also true when we used M3/M2 scores for

the molar proportion in Dasyuromorphia (electronic sup-

plementary material, table S5; slope ¼ 21.208, r ¼ 20.429,

p ¼ 0.06). These results suggest that the two traits are

not highly correlated, and the pattern of adaptation observed

in Creodonta and Dasyuromorphia was not easily facilita-

ted by existing patterns of variation. Consequently, the

relative shearing region varied less in Creodonta and

Dasyuromorphia than in Carnivora (figure 2).
(d) Molar morphology of BMP7-hetero-deficient mice
The results obtained using genetically modified mice suggest

that the patterns of integration and variability caused by

BMP7 are consistent with the evolutionary pattern of carnivoran

dentition that influences M2/M1 and tad/trd, but not M3/M1

(figures 1 and 3; electronic supplementary material, tables

S2–S3; for USAG-1, see electronic supplementary material,

text S7). If this molecule evolves in carnivorans, then the pro-

portion of shearing and grinding regions should vary greatly

(figure 2). However, a positive correlation between M2/M1

and tad/trd mediated by BMP7 inhibits non-carnivoran pat-

terns of dietary adaptation, such as that of creodonts. This is

because creodonts exhibit the opposite adaptation pattern;

their adaptation is facilitated by a negative correlation between

M2/M1 and tad/trd (figure 1b,c). This integration mechanism

can promote a positive correlation between M2/M1 and tad/

trd in Carnivora, and inhibit a negative correlation between

the parameters in Creodonta (figure 1b; electronic supplemen-

tary material, table S3). This integration may be caused by the

same series of molecules involved in inhibition/activation sig-

nalling pathways during the formation of both primary and

secondary enamel knots (i.e. the same series of molecules affects

both teeth and cusp formation [13,29,46]). Accordingly, the rela-

tive sizes of the mesial cusps in molars and mesial molars within

molar rows can be correlated. Therefore, carnivorans have an

advantage over other mammals because they may easily
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evolve various diets. In particular, their dental function may

evolve rapidly because the location of the carnassial in the

molar row fits the developmental mechanism in mammals.

(e) Molecular evolution of BMP7 and morphological
evolution of molars in the ursid lineage, with
implications for the cause of the carnivoran
inhibitory cascade pattern

Our molecular evolutionary analysis revealed that only the

mature-domain of the BMP7 evolved under a high v ratio

along the ursid lineage, although the ratio was still less

than one. Two hypotheses can explain this result: a reduction

in the functional importance of the BMP7 (i.e. relaxed purify-

ing selection) and positive selection at the particular time of

the branch. Because the pro-domain of the BMP7 evolved

under strict purifying selection in the ursid lineage and the

Bmp7 knockout is lethal in mice [47,48], a reduction in the

functional importance of BMP7 is unlikely, and therefore

the positive selection hypothesis is favoured.

It has been hypothesized that inhibitory molecules have

various diffusibilities and the evolution of one of them gener-

ates a unique IC pattern in canids [15]. The pro-domain of

BMP7 interacts with the extracellular matrix and thereby inhi-

bits its diffusion, and the mature-domain functions as a

signalling molecule [40–42]. Therefore, the molecular evol-

utionary results indicate that the strength of signalling

changed over time, but diffusibility did not change in the

ancestral ursid lineages. This conclusion is consistent with

the observation that Bmp7-hetero-deficient mice, which may

present low signalling ability, exhibited higher M2/M1 and

tad/trd scores, and hence displayed a trend similar to that

of the evolution of ursids. In the original experiment by

Kavanagh et al., on which the IC model is based, all inhibi-

tory molecules were simultaneously blocked during mouse

development, or Activin A and BMP4 were added in vitro
[13]. However, we speculate that if another inhibitory mol-

ecule with low diffusibility (or its antagonistic activation

molecules) is increased or decreased, or if its affinity for its

antagonist changes, the dental pattern would be different

from the original model (slope ¼ 2).

Morphological data from fossils and extant carnivorans

are consistent with this scenario. The two morphological

traits, M2/M1 and tad/trd, which are affected by BMP7,

changed gradually from extant carnivorous non-ursid cani-

formia, fossil ursid-relatives and extant ursids (figure 4b,c).

Ursids have been considered the exception of the IC model

because they exhibit M1 , M2 . M3 [14]. However, our

results indicate that ursids evolved gradually from other car-

nivorans along their unique IC pattern, presenting larger

talonids and distal molars (with a particular increase in M2

size), similar to the BMP7-hetero-deficient mice (figure 3).

Therefore, we conclude that the evolution of enigmatic

ursid dentition [14] was caused, or at least influenced, by

positive selection of the mature-domain of BMP7.

This evolutionary pattern is similar to the Canidae–

Ursidae variability (the small slope of the M2/M1 versus

M3/M1 regression and significant correlation between M2/

M1 and tad/trd; figure 1). Therefore, we hypothesized that

the unique carnivoran molar variability and IC pattern

(small slope of the M2/M1 versus M3/M1 regression; elec-

tronic supplementary material, tables S1–S2) results from
evolutionary changes in the expression or function of low-

diffusible inhibitory molecules or their antagonists, such as

BMP7, which affects M2/M1, but not M3/M1. BMP7 effects

on carnivoran evolution are also evidenced by the covariation

between M2/M1 and tad/trd, which are modified in BMP7-

deficient mice (figures 1–4). The high variability in mesial

molar sizes ([15] and this study) and that in mesial cusp

positions and sizes [49] in carnivorans may be caused by

high variability in low-diffusible signalling molecules

during inhibition/activation patterning [29].

( f ) Advantage of carnivoran dentition: evolutionary and
developmental context

Previous studies have suggested that the evolutionary success

of carnivorans is attributable to the evolutionary versatility of

their dentition; specifically, the proportion of shearing and

grinding functions can be changed [8]. Our findings not

only support this hypothesis (figure 2), but also indicate

that a developmental mechanism enhances the effect of the

versatility. That is, a change in only one signalling molecule

can generate phenotypic evolutions that correspondingly

contribute to dietary adaptation. In addition, variability in

these traits is consistent with the functional changes required

for various dietary adaptations. This results from the fact that

the M1 of carnivoran ancestors evolved into the carnassial.

Consequently, adaptations to different dietary habits and

the parallel evolution of dental proportions are more fre-

quently observed in carnivorans than in creodonts and

dasyuromorphians (electronic supplementary material,

figures S1–S2 and table S4). In other words, carnivoran diet-

ary adaptations can occur more easily and rapidly. We

speculate that this is related to their developmental mechan-

ism, such as the positive correlation between M2/M1 and

tad/trd, which facilitates carnivoran dental evolution.

When a new niche emerges, this developmental mechanism

enables taxa to occupy the new niche faster than their compe-

titors can, improving competition. According to a previous

study, an increase in diversity or the extinction of higher

taxa depends on the rate of species origination relative to

the background extinction rate [50]. Accordingly, the fact

that dietary adaptations and dental evolution are facilitated

by their underlying developmental mechanism may have

been a critical factor in the success of carnivorans.

Our results show that the adaptation pattern and devel-

opmental mechanisms of carnivorans give them advantages

over creodonts with respect to dietary adaptation. The extinc-

tion of creodonts and the high current carnivoran diversity

may be caused, or at least influenced, by the adaptation pat-

tern and developmental mechanism discussed above. In

addition, we suggested a mechanism to explain the enigmatic

dental pattern of ursids [14]. These results were generated by

a combination of morphological comparisons of museum

specimens, the use of a genetically modified model organism

and a molecular evolutionary analysis. This approach could

serve as an example for elucidating the developmental

and genetic basis of unique morphological characters of

non-model organisms and fossil species.
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